Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.2 Binary Convolutional Codes

Office Hours:

BKD, 6th floor of Sirindhralai building

Monday 10:00-10:40

Tuesday 12:00-12:40

Thursday 14:20-15:30

Binary Convolutional Codes

- Introduced by Elias in 1955
 - There, it is referred to as convolutional parity-check symbols codes.
 - Peter Elias received
 - Claude E. Shannon Award in 1977
 - IEEE Richard W. Hamming Medal in 2002
 - for "fundamental and pioneering contributions to information theory and its applications
- The encoder has memory.
 - In other words, the encoder is a sequential circuit or a finite-state machine.
 - Easily implemented by shift register(s).
 - The state of the encoder is defined as the contents of its memory.

Binary Convolutional Codes

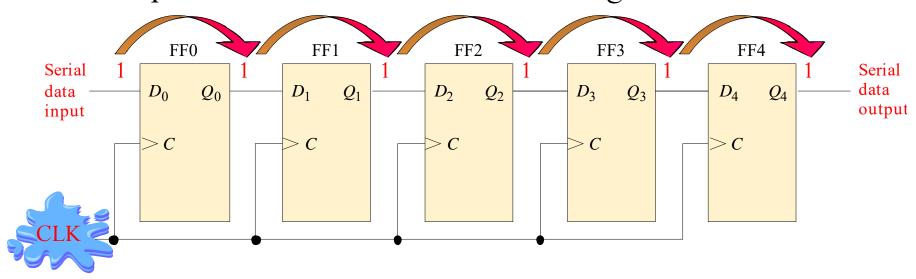
- The encoding is done on a **continuous** running basis rather than by blocks of *k* data digits.
 - So, we use the terms **bit streams** or **sequences** for the input and output of the encoder.
 - In theory, these sequences have infinite duration.
 - In practice, the state of the convolutional code is periodically forced to a known state and therefore code sequences are produced in a block-wise manner.

Binary Convolutional Codes

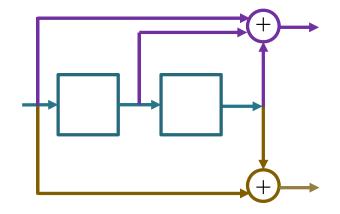
- In general, a rate- $\frac{k}{n}$ convolutional encoder has
 - *k* shift registers, one per input information bit, and
 - *n* output coded bits that are given by linear combinations (over the binary field, of the contents of the registers and the input information bits.
- *k* and *n* are usually small.
- For simplicity of exposition, and for practical purposes, only $\frac{1}{n}$ binary convolutional codes are considered here.
 - k = 1.
 - These are the most widely used binary codes.

(Serial-in/Serial-out) Shift Register

- Accept data serially: one bit at a time on a single line.
- Each clock pulse will move an input bit to the next FF. For example, a 1 is shown as it moves across.
- Example: five-bit serial-in serial-out register.



Example 1: n = 2, k = 1

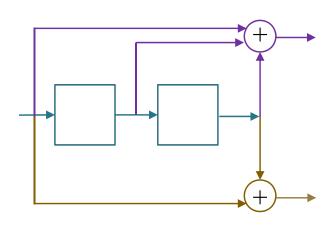


Graphical Representations

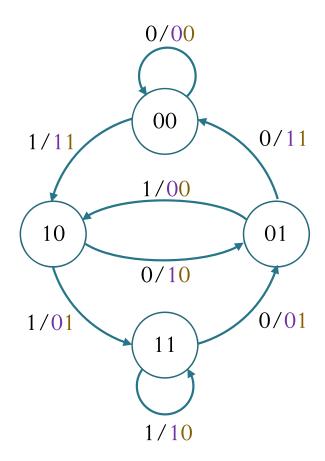
- Three different but related graphical representations have been devised for the study of convolutional encoding:
- 1. the state diagram
- 2. the code tree
- 3. the trellis diagram

Ex. 1: State (Transition) Diagram

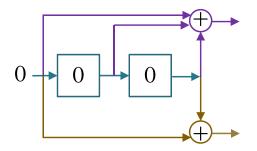
• The encoder behavior can be seen from the perspective of a finite state machine with its state (transition) diagram.

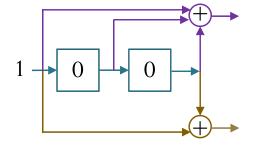


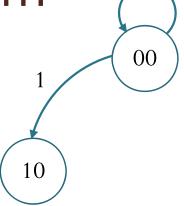
A four-state directed graph that uniquely represents the input-output relation of the encoder.



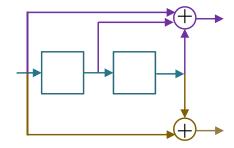
Drawing State Diagram

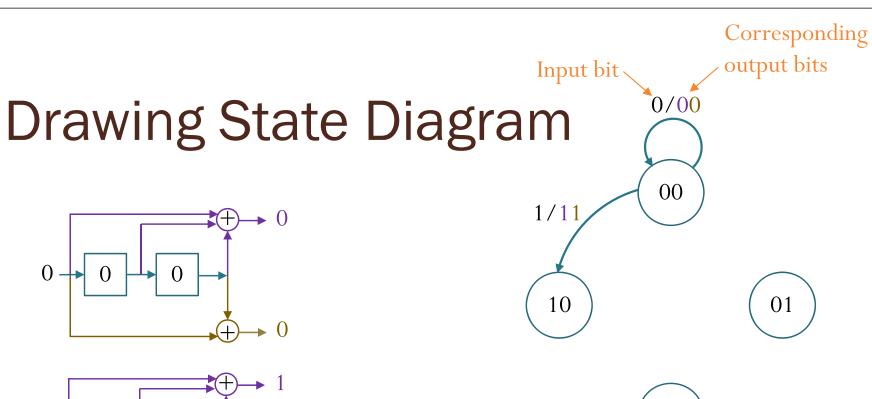


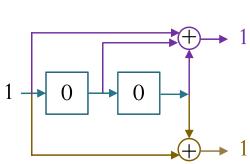


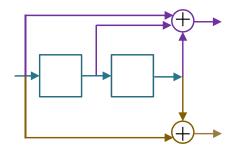


Input bit

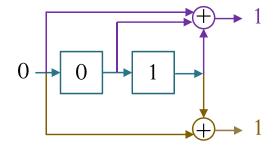


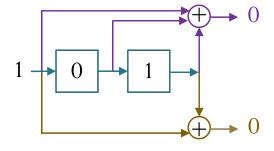


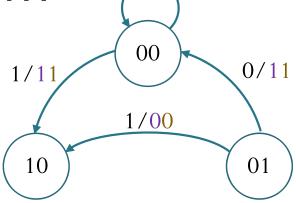




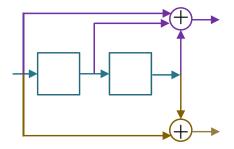
Drawing State Diagram

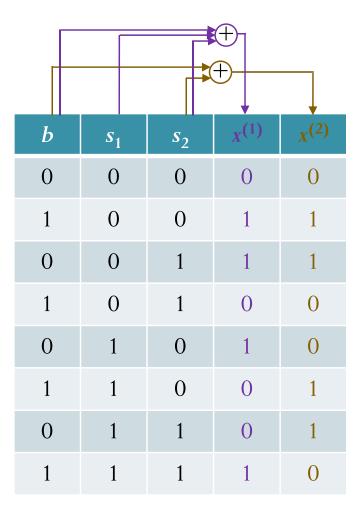


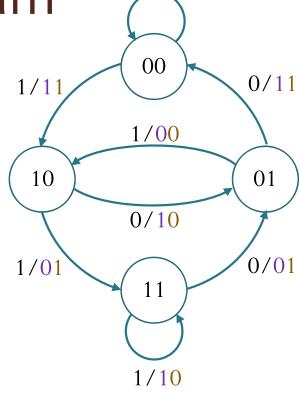




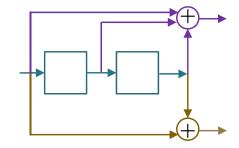
0/00





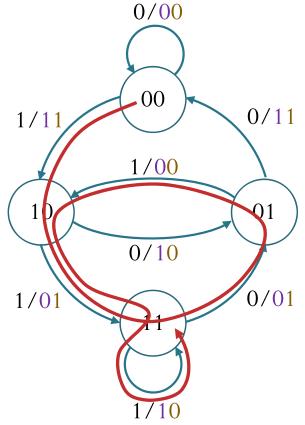


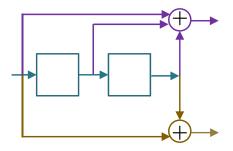
0/00



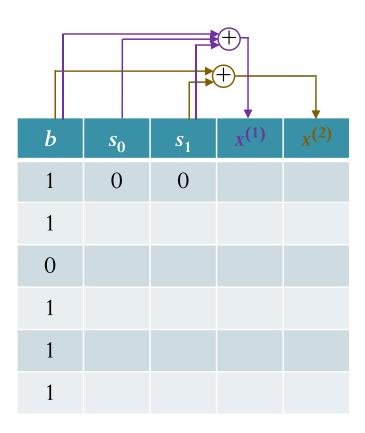
Tracing the State Diagram to Find the Outputs

Input	1	1	0	1	1	1	
Output	11	01	01	00	01	10	

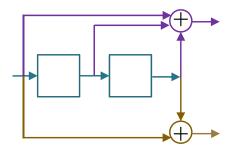




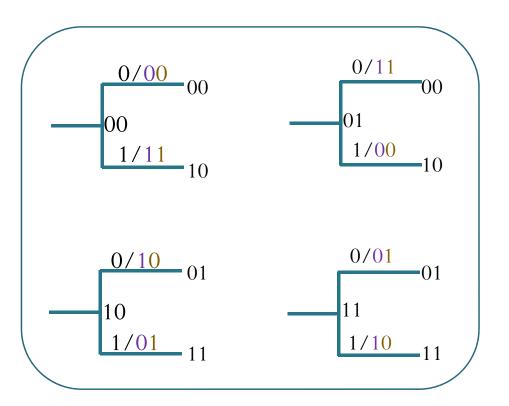
Directly Finding the Output



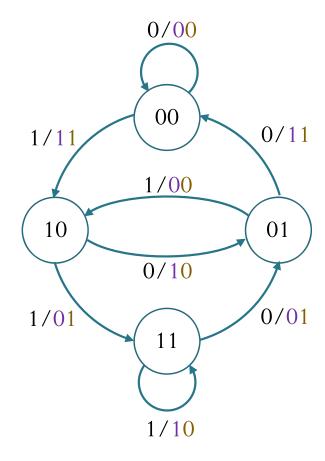
Input	1	1	0	1	1	1
Output						

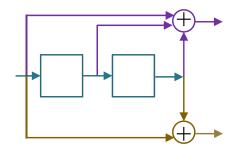


Parts for Code Tree

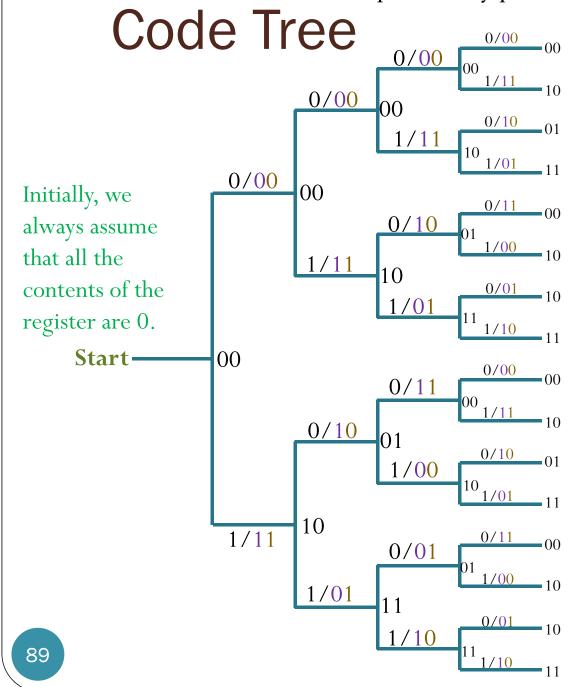


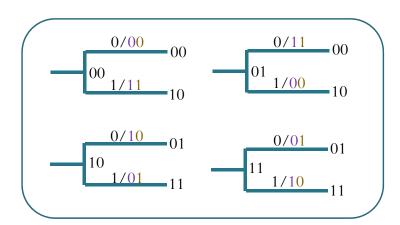
Two branches initiate from each node, the upper one for 0 and the lower one for 1.

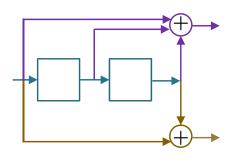


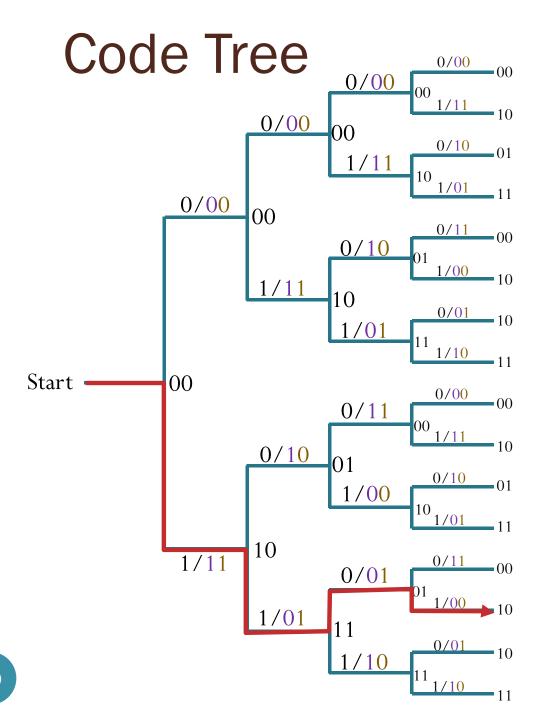


Show the coded output for any possible sequence of data digits.

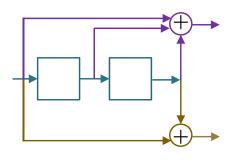






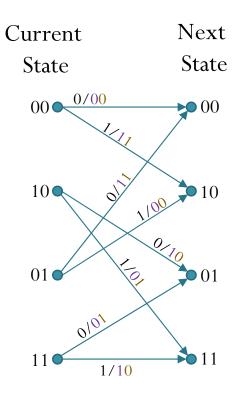


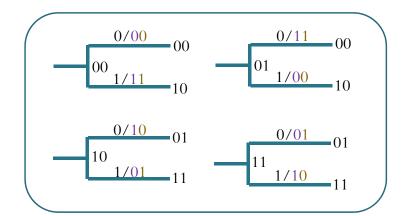
Input	1	1	0	1
Output	11	01	01	00

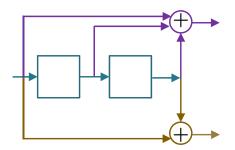


Code Trellis

[Carlson & Crilly, 2009, p. 620]

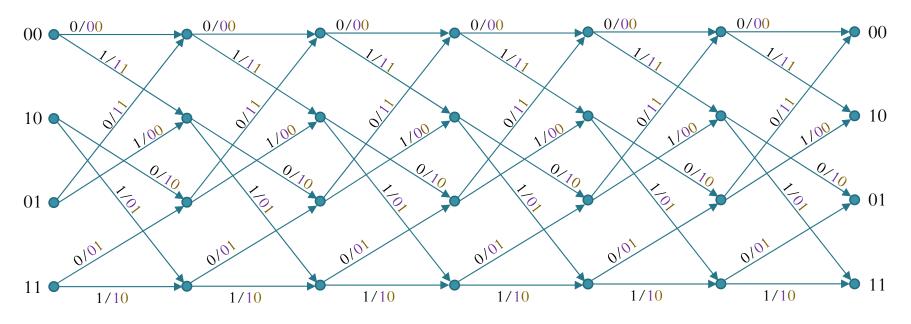


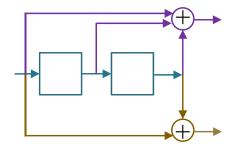




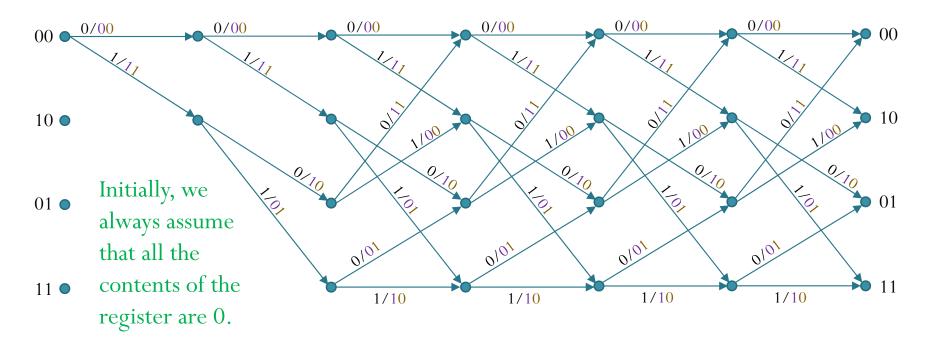
Towards the Trellis Diagram

Another useful way of representing the code tree.

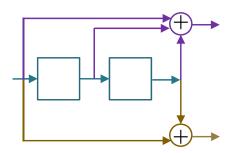




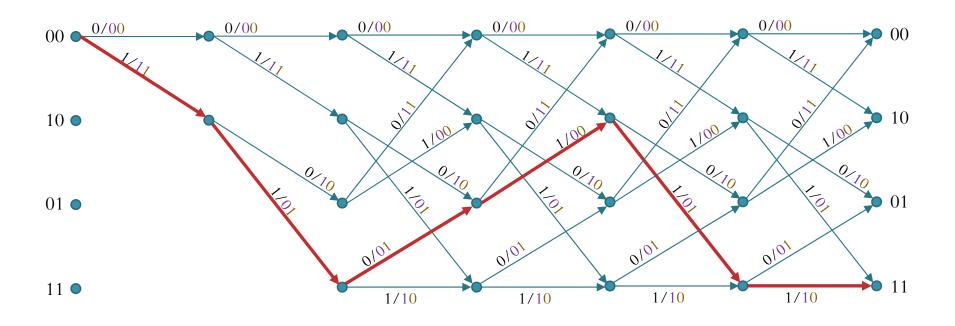
Trellis Diagram



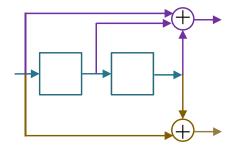
Each path that traverses through the trellis represents a valid codeword.



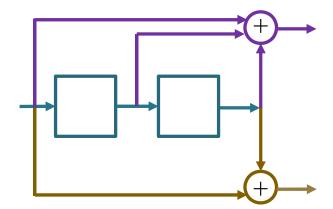
Trellis Diagram



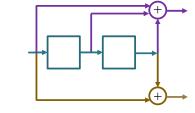
Input	1	1	0	1	1	1
Output	11	01	01	00	01	10



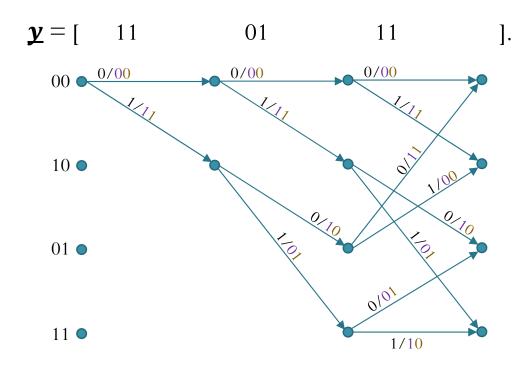
- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.
 - $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} d(\mathbf{x}, \mathbf{y})$



- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.

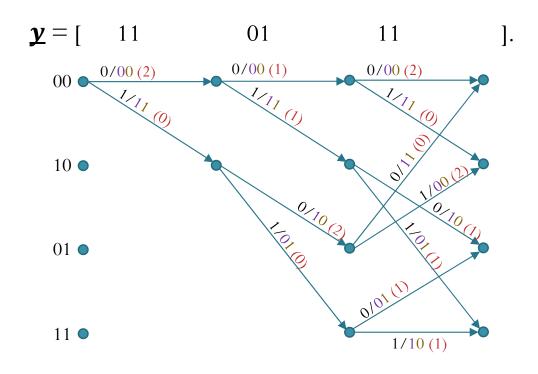


• Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.



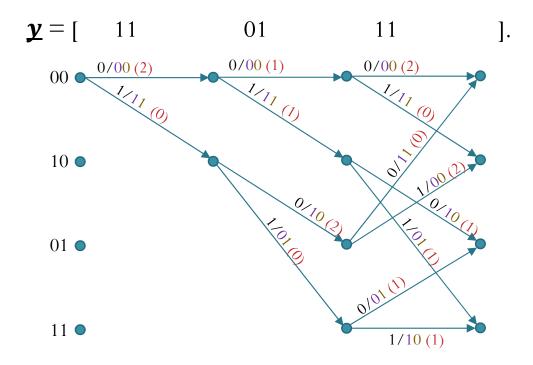
For 3-bit message, there are $2^3 = 8$ possible codewords. We can list all possible codewords. However, here, let's first try to work on the distance directly.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.



The number in parentheses on each branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in \mathbf{y} .

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.



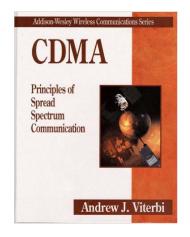
<u>b</u>	$d(\underline{\mathbf{x}},\underline{\mathbf{y}})$
000	2+1+2=5
001	2+1+0=3
010	2+1+1=4
011	2+1+1=4
100	0+2+0=2
101	0+2+2=4
110	0+0+1 = 1
111	0+0+1=1

Viterbi decoding

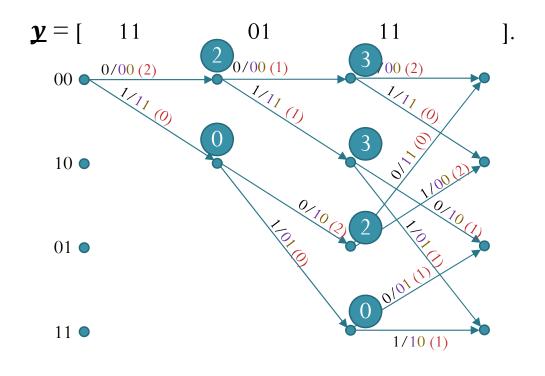
- Developed by Andrew J. Viterbi
 - Also co-founded Qualcomm Inc.
- Published in the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967.

Andrew J. Viterbi

- 1991: Claude E. Shannon Award
- 1952-1957: MIT BS & MS
 - Studied electronics and communications theory under such renowned scholars as Norbert Wiener, Claude Shannon, Bruno Rossi and Roberto Fano.
- 1962: Earned one of the first doctorates in electrical engineering granted at the University of Southern California (USC)
 - Ph.D. dissertation: error correcting codes
- 2004: USC Viterbi School of Engineering named in recognition of his \$52 million gift

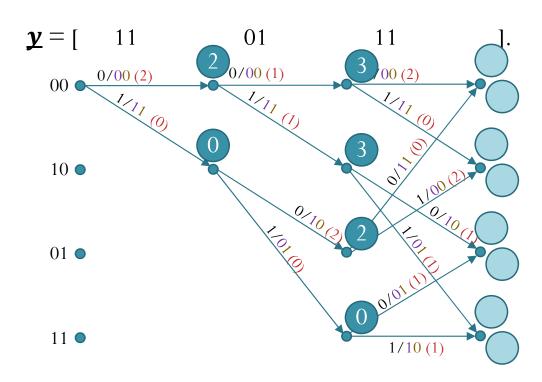


- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.



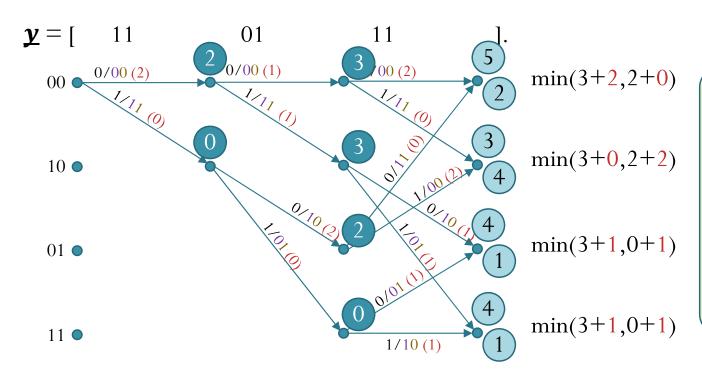
Each circled number at a node is the running (cumulative) path metric, obtained by summing branch metrics (distance) up to that node. Here, it is simply the cumulative distance.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.



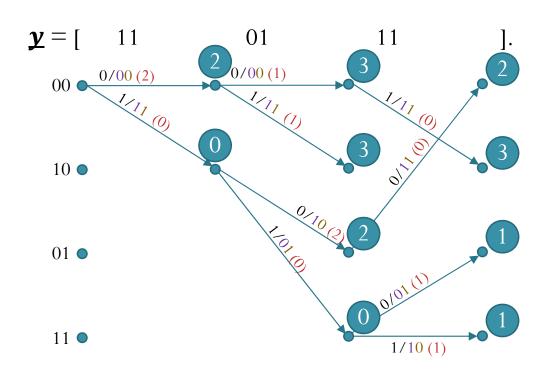
- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.



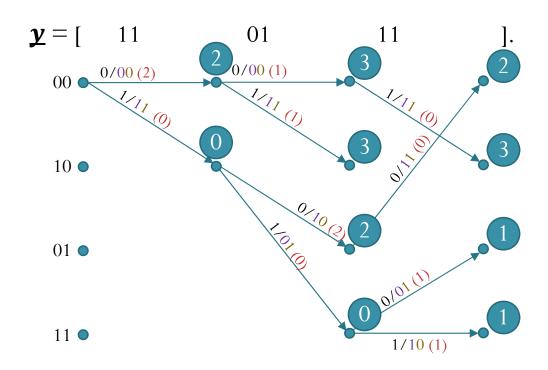
We discard the larger-distance path because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>y</u>.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.



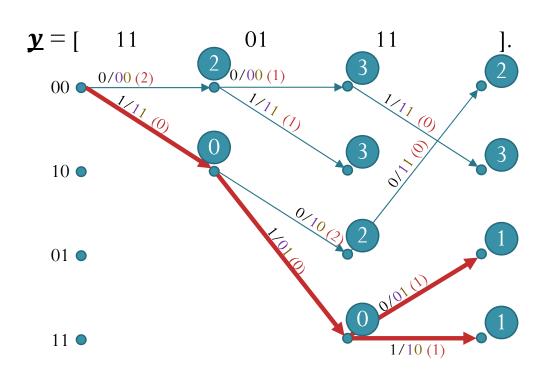
- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We discard the largerdistance path because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>y</u>.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from $\hat{\mathbf{y}}$.



Note that we keep exactly one (optimal) survivor path to each state. (Unless there is a tie, then we keep both or choose any.)

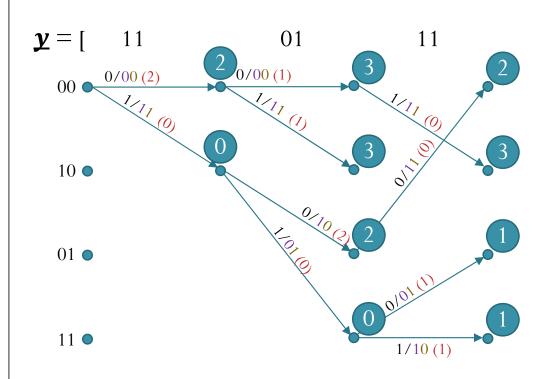
- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.



- So, the codewords which are nearest to **y** is [11 01 01] or [11 01 10].
- The corresponding messages are [110] or [111], respectively.

- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\underline{\mathbf{b}}}$.

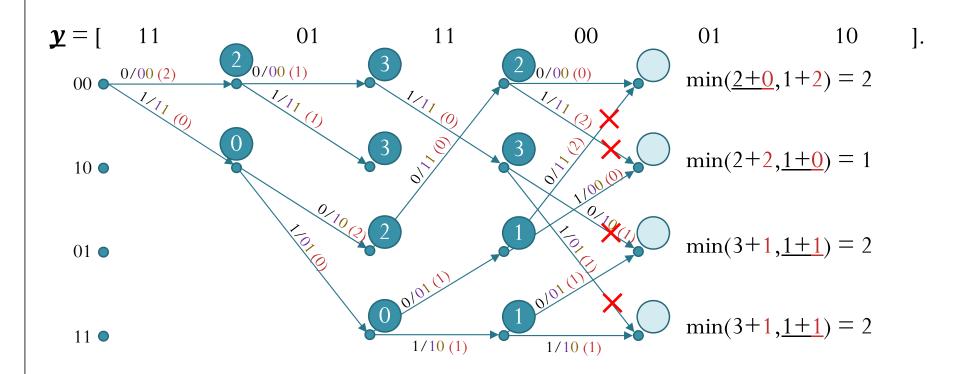
same as before



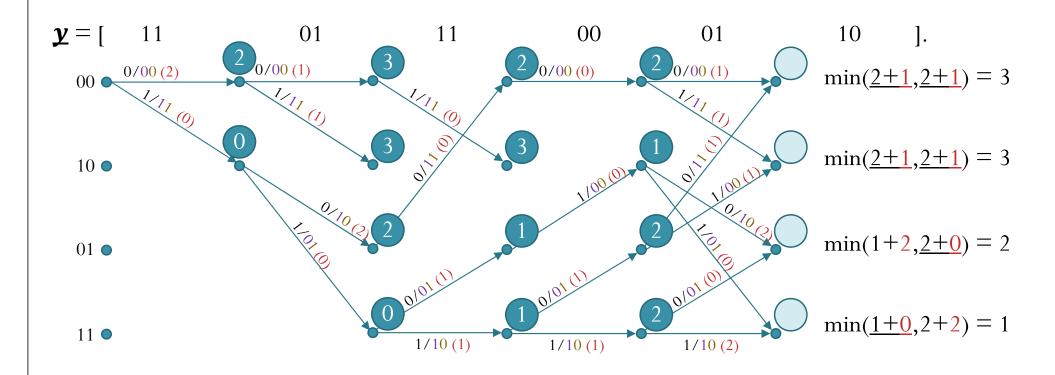
00 01 10

The first part is the same as before. So, we simply copy the diagram that we had.

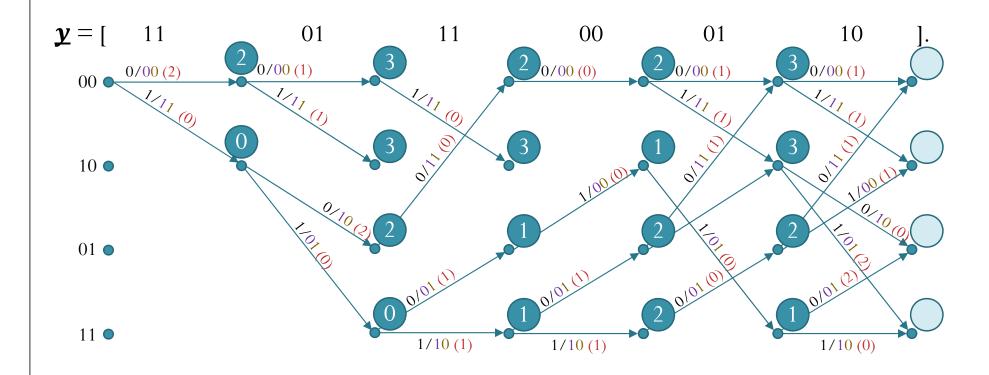
- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find **b**.



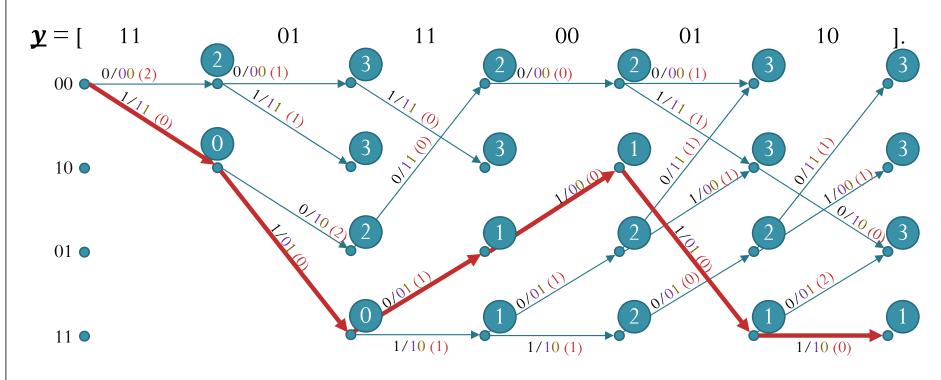
- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.



- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.



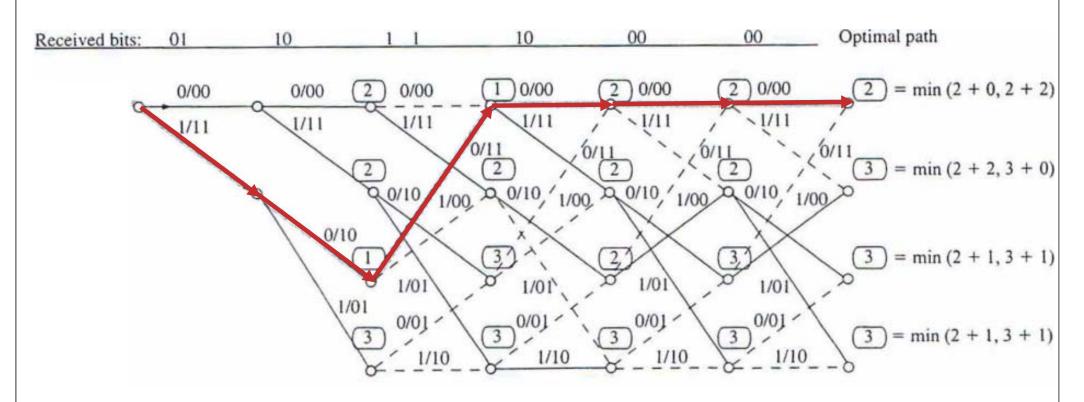
- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.



$$\hat{\mathbf{x}} = [11\ 01\ 01\ 00\ 01\ 10]$$

$$\hat{\mathbf{b}} = [1 \ 1 \ 0 \ 1 \ 1 \ 1]$$

• Suppose $\mathbf{y} = [01 \ 10 \ 11 \ 10 \ 00 \ 00].$



$$\hat{\mathbf{x}} = [11 \ 10 \ 11 \ 00 \ 00 \ 00]$$

$$\hat{\mathbf{b}} = [1\ 0\ 0\ 0\ 0\ 0]$$

References: Conv. Codes

- Lathi and Ding, *Modern Digital and Analog Communication Systems*, 2009
 - [TK5101 L333 2009]
 - Section 15.6 p. 932-941
- Carlson and Crilly, Communication
 Systems: An Introduction to Signals and
 Noise in Electrical Communication, 2010
 - [TK5102.5 C3 2010]
 - Section 13.3 p. 617-637

